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The requirements f o r  t h e  semiconductor, metal  su r f ace  f i l m  and 

a c t i v a t o r  f o r  t h e  su r face -ba r r i e r  cathode a r e  reviewed. The s t u d i e s  on 

GaP c r y s t a l s  and GaP/metal su r f  ace-barrier diodes conducted dur ing  t h e  

course  of t h e  program a r e  reviewed and d iscussed .  

ments involving t h e  evaporat ion of t h i n  f i l m s  of BaO on va r ious  metals  

a r e  then  reviewed and discussed.  The r ecen t  experiments on n i cke l  sub- 

s t r a t e s  i n d i c a t e  very-high-quantum-efficiency photoemission a t  e leva ted  

cathode temperatures.  

The a c t i v a t i o n  exper i -  

The promising emission r e s u l t s  obtained dur ing  t h e  l a s t  q u a r t e r  

f r o m  t r ansve r se  f i e l d  emitters a r e  presented .  .Alphas approaching 50 per-  

cen t  were obtained by sub jec t ing  t h i n  f i l m s  of evaporated BaO t o  high 

t r ansve r se  f i e l d s  0 1 0  V/cm) . These cathodes w e r e  operated under d c  

condi t ions ,  and emission cu r ren t  dens i t i e s  as h igh  a s  about 1 amp/cm 

5 

2 

were obtained.  
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I INTRODUCI'ION 

The ob jec t ive  of t h i s  program i s  t o  perform research  on semiconductor/ 

me ta l ,  ho t -e lec t ron  cold cathodes. The hot e l e c t r o n s  a r e  generated i n  

a t h i n  metal s u r f a c e  f i l m  by forward-biasing a r e c t i f y i n g  semiconductor/ 

metal  diode. 

and is  ac t iva t ed  by a low-work-function coa t ing  t o  reduce  the vacuum 

b a r r i e r  below the semiconductor/metal b a r r i e r .  Energy diagrams f o r  t he  

cathode, w i t h  and without b i a s ,  are shown i n  F igs .  l ( a )  and l ( b ) .  (The 

s t r u c t u r e  is  not  drawn t o  s c a l e  and t h e  th i ckness  of t h e  metal f i lm  i s  

exaggerated f o r  c l a r i t y . )  Referr ing t o  F ig .  l ( b ) ,  a po r t ion  of t he  hot 

e l e c t r o n s  e m i t t e d  over t h e  top  of the b a r r i e r  i n t o  t h e  metal  f i l m  t r a v e r s e  

t h e  f i l m  b a l l i s t i c a l l y  and e n t e r  the vacuum. M o s t  of the  e l e c t r o n s  t h a t  

become s c a t t e r e d  i n  the metal  f i l m  a r e  los t  f o r  our  purposes, however, 

and t h e s e  e l e c t r o n s  c r e a t e  a b i a s  cu r ren t  fo r  the device.  

The metal  f i l m  is on the  o rde r  of SO-to-100 A i n  th i ckness  

Since the i n i t i a t i o n  of the cont rac t ,  an a l t e r n a t i v e  cold cathode 

has  been suggested,  a s  i nd ica t ed  in  the Second Quar t e r ly  Report .'* 
energy diagrams f o r  the new cathode, shown l a t e r ,  resemble those  of an 

n-p-n t r a n s i s t o r ,  and the operat ion of the cathode is  s i m i l a r  t o  t h a t  of 

t he  t r a n s i s t o r .  The vacuum c o n s t i t u t e s  t h e  c o l l e c t o r  f o r  t h e  t r a n s i s t o r  

cathode, a s  it i s  c a l l e d .  The t r a n s i s t o r  cathode promises h igher  

e f f i c i e n c y  than the  sur face-bar r ie r  cathode. 

The 

T h i s  r epor t  summarizes the  work performance during t h e  course of 

the con t r ac t ,  i n  add i t ion  t o  d e t a i l i n g  the accomplishments of the  l a s t  

q u a r t e r .  

Recently,  a t h i r d  cold-cathode concept has  been inves t iga t ed .  

cathode is  c a l l e d  a Transverse Field Emitter (TFE), and t h e  r e s u l t s  ob- 

t a i n e d  from t h e  i n i t i a l  t e s t s  i n d i c a t e  t h a t  high emission e f f i c i e n c i e s  

This  

* 
References a r e  l i s t e d  a t  t h e  end of the r epor t .  
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are p o s s i b l e  from such s t r u c t u r e s .  The TFE w i l l  be described and d i s -  

cussed i n  d e t a i l  i n  S e c .  11-D-2. 

I 

3 



I1 DISCUSSION 

A .  Review of Requirements 

The opera t ion  of the  su r face -ba r r i e r  cathode is i l l u s t r a t e d  i n  the 

energy diagram of t h e  s t r u c t u r e  w i t h  b i a s  appl ied  [F ig .  l ( b ) ] .  E lec t rons  

a r e  i n j e c t e d  i n t o  the  conduction band of the  b a r r i e r  l a y e r  a t  t h e  ohmic 

con tac t  these e l e c t r o n s  d i f f u s e  through the semiconductor toward the  

blocking contac t .  I n  t h e  high-f ie ld  region i n  the v i c i n i t y  of t h e  metal /  

semiconductor b a r r i e r  t h e y  acqui re  t h e  energy necessary f o r  emission i n t o  

vacuum. 

metal/semiconductor b a r r i e r  cp 

metal  f i l m  w i t h  no loss i n  energy. 

semiconductor, t h e  metal su r f ace  f i lm and the  vacuum b a r r i e r  w i l l  be con- 

s idered  i n  the following sections. 

T h i s  assumes t h a t  t h e  metal/vacuum b a r r i e r  cp' i s  less than t h e  m 
and t h a t  the  e l e c t r o n s  t r a v e r s e  t h e  t h i n  b' 

More d e t a i l e d  requirements f o r  the 

1. Semiconductor 

The primary requirement f o r  t h e  semiconductor is the formation 

I n  add i t ion ,  t h e  semicon- of h igh  su r face  b a r r i e r s  w i t h  var ious metals .  

d u c t o r  has t o  have a r e l a t i v e l y  l a rge  bandgap (- 2 . 0  eV) t o  minimize hole 

i n j e c t i o n  from t h e  metal su r f ace  f i lm.  The semiconductor must be capable  

of being doped n-type t o  a reasonably low r e s i s t i v i t y ,  

be poss ib l e  t o  make ohmic contac ts  t o  t h i s  ma te r i a l ,  which should be 

a v a i l a b l e  i n  s i n g l e  c r y s t a l s  l a r g e  enough f o r  u se fu l  cathodes.  

F ina l ly ,  i t  must 

One of t h e  d i f f i c u l t i e s  i n  s e l e c t i n g  s u i t a b l e  semiconductors 

f o r  t h i s  app l i ca t ion  was t h e  lack of a semiconductor/metal model t h a t  was 

cons i s t en t  wi th  experimental  r e s u l t s .  Accordingly, an a n a l y s i s  was made 

of the c o r r e l a t i o n  between b a r r i e r  he igh t s  and metal  work func t ions ,  

which included t h e  effects of sur face  s t a t e s  (Appendices B and C,  F i r s t  

Quar te r ly  Report2). 

i n  t h e  May 1966 i s s u e  of t h e  Journal of Applied  physic^.^ 
t h e  Schottky r e l a t i o n  f o r  b a r r i e r  he ight ,  

This  ana lys i s  is being publ ished i n  rev ised  form 

I n  summary, 



where E 

t h e  add i t ion  of a V term t o  account f o r  su r face  s t a t e s .  When image- 

f o r c e  lowering of t h e  b a r r i e r  i s  included, t h e  approximate expression 

f o r  barrier he ight  becomes : 

is t h e  e l e c t r o n  a f f i n i t y  of t h e  semiconductor, is modified by 
A 

3 

I t  i s  important t o  u s e  'p values  f o r  t h i n  f i lms  of the  metal  i n  ques t ion  

a s  measured on s i n g l e  c r y s t a l s  of t h e  semiconductor under cons idera t ion .  

For  high-work-function metals  l i ke  Pd, P t ,  and Au on GaAs, t h e  b a r r i e r  

he ight  is "pinned" a t  0.85 t o  0.90 eV because of su r face  s t a t e s  a t  t he  

Fermi l e v e l .  

m 

Two semiconductor ma te r i a l s  f o r  t h e  su r face -ba r r i e r  cathode 

were considered i n  a previous study.4 These were s i n g l e  c r y s t a l  and poly- 

c r y s t a l l i n e  ZnO and thermally grown T i 0  I n  t h e  cu r ren t  program a b r i e f  

eva lua t ion  of some 0"SiC was made, b u t  the  major e f f o r t  was concerned w i t h  

s i n g l e  c r y s t a l  GaP. The experimental  r e s u l t s  w i t h  the l a t t e r  ma te r i a l  

w i l l  be reviewed i n  Sec. 11-B. 

2' 

2.  Surface Film 

The need f o r  a high semiconductor/metal b a r r i e r  was explained 

above. T h i s  requirement favors  m e t a l s  w i t h  h igher  work func t ions ,  b u t  

t h e r e  a r e  o t h e r  cons ide ra t ions .  The need f o r  a low metal/vacuum b a r r i e r  

appears t o  con t r ad ic t  t he  first requirement. However, t h e  r e s u l t s  obtained 

i n  a c t i v a t i n g  var ious  metal f i l m s  with BaO i n d i c a t e  t h a t  t h e  i n i t i a l  work 

func t ion  of the  metal is  of l i t t l e  consequence (Table I) .  

The su r face  f i l m  has  t o  be t h i n  enough t o  allow t h e  hot elec- 

t r o n s  t o  t r a v e r s e  i t  w i t h  a minimum loss i n  energy. Considering the 

va lues  of ho t -e lec t ron  mean f r e e  path t h a t  have been measured f o r  some 

metals ,  t h e  su r face  f i lm  should be less than 100 A i n  th ickness  f o r  

e f f i c i e n t  opera t ion .  Since t h e  l a t e r a l  conduct iv i ty  is  poor f o r  such 

0 

f i l m s ,  a gridded su r face  design was adopted 

t h i c k  metal s t r i p e s  connected by an annular  

f i rs t .  Th i s  was followed by a t h i n  over lay  

t h e  a c t i v a t i o n  cycle. 
5 

i n  t h i s  s t u d y .  Re la t ive ly  

depos i t  w e r e  evaporated 

of the  same metal j u s t  before  



Table I 

* 
Subs t r a t e  (91 

Film ( i n i t i a l )  

A g  4.31 e V  

P t  5 .48 e V  

W 4.36 e V  

Pd 4.95 e V  

Ba 2.50 e V  

Mo 4.22 e V  

EVALUATION OF BARIUM-OXIDE-ACTIVATION FXPERIMENTS 

Average '42 
( f i n a l )  

1.48 e V  0.29 2.83 e V  

1.66 e V  0.30 3.82 e V  

1.44 e V  0.33 2.92 e V  

1.46 e V  0.295 3.49 e V  

1.48 e V  0.59 1.02 e V  

1.75 e V  0 .415  2.47 e V  

' p241  'pl - 02 

* 
Average of recent  measurements on t h i n  f i lms  of t h e  metal .  

The e f f e c t  of traces of pump o i l  on t h e  semiconductor/metal 

b a r r i e r  was discussed i n  the Second Quar te r ly  Report.' 

metal  diodes w e r e  made i n  o i l - f r e e  systems; t h e  diode c h a r a c t e r i s t i c s  

obtained with var ious  metals  w i l l  be considered i n  Sec. 11-B. The metals 

used were P t ,  W, and Pd, which have h igh  melt ing po in t s .  Thin f i l m s  of 

t h e s e  metals  can withstand bake-out cyc le s  without agglomerating, which 

is  another  cons idera t ion  i n  se l ec t ing  ma te r i a l s  f o r  t h i s  s t r u c t u r e .  

Most of t h e  GaP/ 

3. Act iva t ion  

Since t h e  metal/semiconductor b a r r i e r s  a t t a i n a b l e  with GaP a r e  

i n  t h e  v i c i n i t y  of 1.5 eV, t h e  metal su r f ace  f i l m  has t o  be ac t iva t ed  t o  

produce a metal/vacuum b a r r i e r  less than  t h i s  value.  The ma te r i a l  used 

f o r  t h i s  purpose should be r e l a t i v e l y  easy t o  apply t o  f a c i l i t a t e  re- 

p roduc ib i l i t y .  

schedules  t h a t  are used i n  f ab r i ca t ing  t h e  tubes  t h a t  u t i l i z e  t h i s  cathode. 

The ac t iva t ed  sur face  should be s t a b l e  i n  t h e  type of vacuums t h a t  a r e  

a t t a i n a b l e  with current technology. 

It  should a l s o  be capable of withstanding t h e  processing 
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Evaporated f i l m s  of BaO appear t o  m e e t  most of t h e s e  requi re -  

ments. This  ma te r i a l  has  been u s e d  i n  t h i s  labora tory  for t h e  p a s t  t w o  

y e a r s  on t h i s  and related programs. Various techniques f o r  opt imizing 

t h e  a c t i v a t i o n  process  have been developed. 

experimental  r e s u l t s  obtained on var ious metals  w i l l  be reviewed i n  

Sec.  11-C. 

B. Semiconductor S tud ie s  

These techniques and t h e  

1. GaP C h a r a c t e r i s t i c s  

Most of t h e  n-type GaP used i n  t h i s  i n v e s t i g a t i o n  w a s  obtained 

from Monsanto Chemical Company. One sample from Stanford Univers i ty  was 

used i n  t h e  e a r l i e r  work on the program. The p r o p e r t i e s  and prepara t ion  

of t h e  c r y s t a l s  w i l l  be summarized i n  t h i s  r epor t .  Detai led information 

w i l l  be found i n  t h e  q u a r t e r l y  repor t s ,  p a r t i c u l a r l y  i n  t h e  F i r s t  Quar t e r ly  

Report .2 

The Stanford Univers i ty  c r y s t a l  was doped with s u l f u r  and had 

a r e s i s t i v i t y  of 0.38 ohm-cm. 

t e l l e r i u m  and a number of diodes were made from a c r y s t a l  having a 

r e s i s t i v i t y  of 0.079 ohm-cm. 

and va lues  of 110 and 125 c m  /volt-s were obtained.  Op t i ca l  t r ans -  

mission measurements produced bandgap energ ies  i n  t h e  range of 2.15 t o  

2.22 e V .  

The Monsanto c r y s t a l s  were doped with 

H a l l  measurements were made on both c r y s t a l s  
2 

It  w a s  found tha t  t h e  "A" (gallium) s i d e  of t h e  c r y s t a l  w i l l  

etch t o  a mir ror  f i n i s h  i n  ho t  aqua r eg ia ,  but w i l l  p i t  and s c r a t c h  very 

e a s i l y  by mechanical abrasion.  The "B" (phosphorus) s i d e  t a k e s  a good 

mechanical po l i sh  and e t ches  t o  a matt f i n i s h  i n  hot  agua reg ia .  A 

f l a t ,  uniform mi r ro r  f i n i s h  p r i o r  t o  e t ch ing  w a s  obtained with a Buehler 

AB Texmet pol i sh ing  c l o t h  backed by a g l a s s  p l a t e .  

i n  deionized water is  used, s t a r t i n g  with 5-micron p a r t i c l e  size followed 

by 0.3-micron p a r t i c l e s .  

A s l u r r y  of alumina 

A paragraph f r o m  t h e  F i r s t  Quar te r ly  Report2 regarding t h e  

t o x i c i t y  of GaP i n  po l i sh ing  operat ions is  included here  as a precaut ion  

f o r  anyone contemplating t h e  u s e  of t h i s  ma te r i a l .  

7 



11 Lapping and pol i sh ing  operat ions on gal l ium phosphide 
a r e  accompanied by t h e  r e l e a s e  of phosphine gas .  This  is  
assoc ia ted  with any mechanical abrading process ,  which ap- 
pa ren t ly  enhances t h e  formation of poisonous phosphorus com- 
pounds through c a t a l y t i c  ac t ion .  Phosphine gas  is very high 
i n  t o x i c i t y ,  and t h e  maximum allowable concent ra t ion  is  0.05 
ppm. Concentrat ions w e l l  below t h e  maximum a r e  e a s i l y  d e t e c t e d  
a s  phosphine has  a s t r o n g  c h a r a c t e r i s t i c  odor which becomes 
no t i ceab le  a t  very l o w  concentrat ion leve ls .  Because of t h e  
t o x i c  q u a l i t i e s  of t h e  lapping and po l i sh ing  products ,  a l l  
mechanical opera t ions  should be done i n  a fume hood with a 
flow r a t e  s u f f i c i e n t  t o  maintain concent ra t ions  below t h e  
maximum allowable va lues .  1? 

Ohmic con tac t s  t o  t h e  GaP have been formed by a l loy ing  m e t a l l i c  

lead  or tellurium-doped s i l v e r  t o  t h e  "B" s i d e  of t h e  c r y s t a l .  

convenient f o r  labora tory  tests, but t h e  lower-vapor-pressure ma te r i a l  

is  required f o r  high-vacuum operat ion.  A small  p i ece  of s i l v e r  doped 

wi th  1 percent  t e l lu r ium is  preformed by hea t ing  i n t o  a b a l l  approximately 

1 0  m i l s  i n  diameter.  This  is  alloyed i n t o  t h e  GaP a t  about 900°C i n  a 

d r y  hydrogen atmosphere. 

Lead i s  

2. G a P / P t  Diodes 

Detai led r e s u l t s  on GaP/Pt diodes were included i n  t h e  F i r s t  

Q u a r t e r l y  Report." 

of t h e s e  r e s u l t s  was evidence of a contaminating f i l m  between t h e  P t  and 

t h e  G a P .  A semilog p l o t  of cur ren t  v s .  vo l t age  f o r  one of t h e s e  d i o d e s  

(Fig. 2) produced a value of n of about 3.5. I n  t h e  s t r a i g h t - l i n e  por- 

t i o n  of t h i s  p l o t  where 1 cy exp [qV/nkt] , n should be un i ty  according t o  

s i m p l e  Schottky theory .  When t h e  s t r a i g h t - l i n e  reverse-bias  po r t ion  of 

a p l o t  of 1/C vs .  V was ex t rapola ted  (Fig. 3), an i n t e r c e p t  much l a r g e r  

than  t h e  b a r r i e r  he ight  was obtained. The donor dens i ty  i n  t h e  GaP calcu-  

l a t e d  from t h e  s lope  of t h i s  p l o t  was i n  good agreement with a previous 

value ca l cu la t ed  from r e s i s t i v i t y  and mobi l i ty  measurements. The i n t e r c e p t  

from a p l o t  of t h e  square root  of the response p e r  photon vs .  photon 

energy (Fig. 4)  agreed with t h e  in t e rcep t  from t h e  forward-bias po r t ion  

The s i g n i f i c a n t  f e a t u r e  t h a t  came out  of t h e  ana lys i s  

2 

of t h e  p l o t  of l / C z  v s .  V shown i n  Fig.  3. 
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FIG. 3 PLOT OF 1/C2 vs. V FOR GaP/Pt DIODE 

Since t h e  P t  was evaporated i n  an oil-pumped vacuum sys t em a t  
-6 

B pres su re  of about 10 t o r r ,  it was concluded t h a t  t h e  contamination 

was due  t o  o i l .  A l l  subsequent GaP d i o d e s  were f ab r i ca t ed  i n  o i l - f r e e  

s y s t e m s .  

3. GaP/W D i o d e s  

When it was found t h a t  t h e  lowest Pt/BaO vacuum b a r r i e r s  

a t t a i n a b l e  were not  compatible w i t h  t h e  GaP&t b a r r i e r s ,  i t  was decided 

t o  t r y  W i n  p l ace  of t h e  P t .  

were included i n  t h e  Second Quarter ly  Report.’ 

experienced i n  evaporat ing w, but the  diodes t h a t  were tested had t h e  

b e s t  c h a r a c t e r i s t i c s  of a l l  t h e  GaP/metal diodes made i n  t h i s  program. 

t h e  value of n from t h e  semilog p lo t  of cu r ren t  v s .  vo l t age  i n  F ig .  5 

is about 1 .7 .  Although t h e  diode does not  fol low simple Schottky theory ,  

t h i s  value of n is  lower than t h a t  obtained with t h e  GaP/Pt diodes.  This  

may be due i n  p a r t  t o  e l imina t ing  the  o i l  contamination by using an ion- 

pumped sys t em f o r  t h e  W experiments. 

The r e s u l t s  obtained with GaP/W d i o d e s  

Some d i f f i c u l t y  was 
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2 The 1/C v s .  V p l o t s  and t h e  spec t ra l - response  da t a  confirm 

t h e  nonuniform b a r r i e r  model f o r  these  diodes.  The i n t e r c e p t  from t h e  

p l o t  of t h e  1 / C  vs. V is  1.5 eV (Fig. 61, but t h e  capaci tance appears 

t o  go i n f i n i t e  a t  about 0.8 e V .  The square root  of t h e  response p e r  

photon vs .  photon energy has  a long low-energy t a i l  which makes it 

2 
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d i f f i  

~- 

u l t  t o  ob ta in  a well-defined i n t e r c  p t .  A range of va lues  between 

1.3 eV and 1.5 e V  can be se l ec t ed  from t h e  p l o t  i n  Fig.  7 .  I: 4.0 

I 1( 10-2' 
C2 

3.0 - -  

2.0 - -  

I I 
2.0 -1.0 0 1.0 2 .o 

REV. FWD. 
BIAS- volts 

T A - 9 5 1 1 - 7 4  

REV. FWD. 
BIAS- volts 

T A - 9 5 1 1 - 7 4  

FIG. 6 PLOT OF 1/C2 vs. V FOR G a P M  DIODE 

4 .  GaP/Pd Diodes 

Although good GaP/W diodes were made and t e s t e d ,  t h e  d i f f i c u l t i e s  

i n  evaporat ing W l e d  t o  the se l ec t ion  of another  meta l .  

theory  developed by Geppert, Cowley, and DoreY3 Pd appeared t o  be a 

Based upon t h e  
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reasonable  choice.  A number of diodes were f ab r i ca t ed  and t h e  r e s u l t s  

of measurements made were reported i n  t h e  Third Quarter ly  Report.5 

diode was placed on l i f e  test and i ts  performance is described i n  Sec. 

One 

11-F-2. 

A t y p i c a l  I -V  c h a r a c t e r i s t i c  i s  shown i n  Fig.  8, and again 

t h e r e  a r e  ind ica t ions  of nonuniform b a r r i e r s  r e s u l t i n g  i n  high c u r r e n t s  

10-3 
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In 

w 

4 

Y 
!$ 

10-7 

0 0.2 0.4 0.6 0.8 1.0 1.2 
VOLTS T c - s i # - n  

FIG. 8 PLOT OF LOG I vs. V FOR G a P P d  DIODE 

a t  l o w  b i a s  vo l tages .  The p l o t  of 1/C2 vs. V i n  F ig .  9 goes t o  z e r o  a t  

one v o l t  forward b i a s  and t h e  in t e rcep t  i n d i c a t e s  a d i f f u s i o n  p o t e n t i a l  

of approximately 1 . 3  e V .  

obtained from spectral-response measurements. Figure 10 has  a unique 

i n t e r c e p t  a t  1.475 ev, but t h e  long low-energy t a i l  i n d i c a t e s  regions 

i n  t h e  b a r r i e r  having lower values .  

A range of va lues  between 1.40 and 1.55 e V  was 
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I t  should be noted t h a t  t h e  i n t e r c e p t s  from a l l  t h e  p l o t s  of 

Assuming t h a t  
2 

1 /C  

t h e  Fermi l e v e l  is  0.06 e V  below t h e  conduction band, t h e  i n t e r c e p t  

va lues  should be increased by t h i s  amount t o  g ive  t h e  b a r r i e r  he ight .  

vs .  V f o r  t he  GaP diodes a r e  d i f fus ion  p o t e n t i a l s .  

C. Act iva t ion  Experiments 

When experimental  work on 

vacuum b a r r i e r ,  based upon the  

BaO was s t a r t e d ,  the ob jec t ive  was a 1.0-eV 

results of Moore and All ison."  However, 

as  the  work progressed and more l i t e r a t u r e  on the  sub jec t  was reviewed, 

it became apparent t h a t  1.0-eV pho toe lec t r i c  work func t ions  were not  

r e a l i s t i c .  The low values  published by Moore and Al l i son  were thermionic 

va lues ,  and it w a s  found t h a t  i n  general  t he  pho toe lec t r i c  va lues  were 

a f e w  t e n t h s  of an eV higher .  Several  techniques f o r  reducing the photo- 

e lectr ic  threshold have been reported.  These include hea t ing  the  sub- 

s t r a t e  during the a c t i v a t i o n  process, applying a f i e l d  between t h e  sub- 

s t ra te  and t h e  BaO source during evaporation, and adding a small  amount 

of Ba during t h e  process.  A review of some of the l i t e r a t u r e  r e l a t i n g  

t o  these techniques was made i n  the  Second Quar te r ly  Report .  1 

1. Pt/BaO 

Platinum was evaporated onto a Mo s u b s t r a t e  by induct ive ly  

hea t ing  a P t  source.  The  f r e s h l y  deposited P t  was ac t iva t ed  w i t h  BaO 

i n  the usual manner. A s h u t t e r  was incorporated i n  the t u b e  t o  sh i e ld  

the  s u b s t r a t e  during the conversion of the BaCO t o  BaO. No heat  was 

appl ied  t o  the s u b s t r a t e  during the  a c t i v a t i o n  process .  As shown i n  

Fig.  11, a work func t ion  of 1.60 e V  was obtained i n  a p l o t  of the square 

root  of the response pe r  photon vs .  photon energy. The spec t r e1  measure- 

ment was made with the g l a s s  phototube on t h e  vacuum s t a t i o n .  A previous 

experiment i n  which a small amount of P t  was appl ied t o  a Ta s u b s t r a t e  

produced a double in t e rcep t .  The higher va lue  of 1.80 eV w a s  a t t r i b u t e d  

t o  t h e  P t  and t h e  lower va lue  of 1.32 e V  was assoc ia ted  w i t h  the  Ta 

s u b s t r a t e .  

3 
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2. W/BaO 
~ 

A cons iderable  amount of da t a  was obtained on t h e  a c t i v a t i o n  of 

W f i l m s  deposi ted on Mo s u b s t r a t e s  by e l e c t r o n  beam evaporat ion.  I t  was 

determined t h a t  t h e  BaO f i l m  had t o  be 1 0  t o  15  monolayers t h i c k  i n  o rde r  

t o  o b t a i n  a uniform work func t ion .  A near-optimum value  of 1.52 e V  was 

measured with 20 t o  30 monolayers as shown i n  F ig .  12. With less BaO 

t h e  p l o t s  of t h e  square root of t he  response p e r  photon vs .  photon energy 

w e r e  concave upwards a s  they approached t h e  threshold  energy. T h i s  sugges ts  

a v a r i a t i o n  i n  t h e  vacuum b a r r i e r s  due t o  nonuniform BaO coverage. When 

more than 30 monolayers of BaO were appl ied ,  t h e  work func t ion  increased .  

A l l  t h e s e  measurements were made with t h e  photocathodes i n  a metal, ion- 

pumped system. Some d e t e r i o r a t i o n  i n  t h e  work func t ion  with t i m e  was 

observed with a vacuum est imated t o  be 6 t o  8 X 10 torr.  -9 

3. Pd/BaO 

Two v a r i a t i o n s  i n  t h e  a c t i v a t i o n  process  were introduced when 

Pd f i l m s  were s tud ied .  These were a heated s u b s t r a t e  and t h e  a d d i t i o n  

of a small amount of Ba metal .  The r e s u l t s  were q u i t e  i n t e r e s t i n g  and 

were reported i n  the Third Quar t e r ly  Report .  I n  summary, t h e  a d d i t i o n  

of Ba t o  a Pd/BaO su r face  w i t h  a work func t ion  of 1.7 eV reduced the  

va lue  t o  1.42 e V .  This  was car r ied  o u t  with t h e  s u b s t r a t e  a t  room 

temperature .  Previous t o  t h i s  a threshold of 1.55 e V  had been recorded 

wi th  BaO a lone  on the  Pd. The e f f e c t  of the combination of hea t ing  t h e  

s u b s t r a t e  t o  6OOOC during the  BaO evaporat ion and then  adding Ba i s  

shown i n  Fig.  13. The r e s u l t  of 1.45 eV is e s s e n t i a l l y  the same a s  

t h a t  obtained e a r l i e r  w i t h  the s u b s t r a t e  a t  room temperature.  However, 

a double i n t e r c e p t  obtained from a p l o t  of the  r e s u l t s  w i t h  BaO a lone  

on the heated s u b s t r a t e  produced values  of 1.22 eV and 1.375 eV.  The 

lower va lue  may have been r e l a t e d  t o  the N i  s u b s t r a t e  used i n  t h i s  

experiment. 

4 .  Ba/BaO 

I n  reviewing the work-function va lues  obtained by applying 

BaO t o  var ious  metals ,  it appeared t h a t  t h e  r e s u l t s  were almost inde- 

pendent of t h e  metal  used. Table  I summarizes t h e s e  resu l t s  and inc ludes  
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t h e  r a t i o  of the f i n a l  work funct ion t o  t h e  i n i t i a l  work func t ion  a s  

w e l l  a s  the  d i f f e r e n c e  i n  these  values .  It  was d e c i d e d  t o  t r y  a c t i v a t i n g  

a Ba metal f i l m  with BaO t o  determine t h e  e f f e c t  of s t a r t i n g  w i t h  a 

low-work-function metal .  The r e s u l t  is  shown i n  F ig .  14,  which has an 

i n t e r c e p t  of 1.48 e V .  Although other f a c t o r s  may be involved, it seems 

t h a t  t h e  i n i t i a l  work func t ion  of t he  metal  has  l i t t l e  e f f e c t  on t h e  

a c t i v a t i o n  process. 

5. Ni/BaO 

Some r e s u l t s  on N i  were included i n  t h e  Third Q u a r t e r l y  Report.' 

I n  t h e  l a s t  q u a r t e r  of t h i s  program more measurements were made on Ni/BaO 

cathodes which were formed by deposi t ing BaO on N i  a t  600OC. Figure 15 

is  a p l o t  of t h e  photoresponse and the thermionic  emission a s  a func t ion  

of temperature .  It  was found t h a t  t h e  thermionic  component could be 

reduced w i t h  n e g l i g i b l e  e f f e c t  on the p h o t o e l e c t r i c  component by re- 

ducing t h e  anode p o t e n t i a l  (Fig. 16). 
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FIG. 14 SQUARE ROOT OF PHOTORESPONSE PER PHOTON vs. PHOTON ENERGY 
FOR Ba/BaO PHOTOTUBE 

The s p e c t r a l  response a t  approximately 6OO0C i s  i n t e r e s t i n g  

because of the unusual low energy " t a i l "  shown i n  F ig .  17.  

observed t h a t  t he  s e n s i t i v i t y  a t  higher  photon ene rg ie s  was g r e a t l y  

enhanced by opera t ing  the cathode a t  t h i s  e leva ted  temperature.  A p l o t  

of t h e  inc rease  i n  photocurrent due t o  Fowler theory  (see Appendix A 

of t h e  F i r s t  Q u a r t e r l y  Report2) is given i n  F ig .  18 along with the  ob- 

served photoresponse. The cu r ren t  p r e d i c t e d  by t h e  Fowler theory  is  

about two orders  of magnitude below the  measured va lues .  O t h e r  mechanisms 

t o  exp la in  t h i s  e f f e c t  a r e  b e i n g  considered i n  order to ob ta in  a b e t t e r  

understanding of t h e  BaO a c t i v a t i o n  process .  

It  was a l s o  

D. A l t e rna te  Cathode S t r u c t u r e s  

1. T r a n s i s t o r  Cathode 

The concept of t h e  t r a n s i s t o r  cathode was descr ibed i n  the 

T h i r d  Quar te r ly  Report.5 Energy diagrams with and without b i a s  a r e  
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reproduced i n  F ig .  19 .  The operat ion of t h e  cathode resembles t h a t  of 

an n-p-n t r a n s i s t o r ,  with t h e  vacuum rep lac ing  t h e  c o l l e c t o r .  One of 

t h e  a t t r a c t i v e  f e a t u r e s  of t h i s  cathode is  t h e  absence of t h e  t h i n  metal 

su r f ace  f i l m  required i n  the  sur face-bar r ie r  cathode. However, i t  does 

r e q u i r e  a su r face  t reatment  t o  produce a low vacuum barrier. Some ex- 

per imental  work along these  l ines  h a s  been performed by exposing f r e s h l y  

cleaved GaAs c r y s t a l s  t o  BaO. One of t h e  o b j e c t i v e s  i n  t h i s  work w a s  t o  

determine i f  r e s u l t s  similar t o  those of Scheer and van Laar' could be 

obtained by us ing  BaO i n  place of cesium on GaAs. 

I n  t h e  f i r s t  experiment t he  GaAs cleaved very  n i c e l y  dur ing  

t h e  evaporat ion of BaO from a nickel  cathode s t r u c t u r e ,  which w a s  he ld  

a t  a temperature of approximately 1070OC. A f t e r  2 minutes of evaporat ion 

t h e  s p e c t r a l  response of t h e  cathode w a s  measured t o  determine t h e  

p h o t o s e n s i t i v i t y  and t h e  photothreshold.  The s e n s i t i v i t y  w a s  rather 
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poor but t h e  threshold had been brought down from t h a t  of bulk GaAs t o  

about 1.67 eV.  The response is  shown i n  Fig.  20. I n  o rde r  t o  improve 

t h e  s e n s i t i v i t y ,  BaO was evaporated f o r  an add i t iona l  minute a t  1O7O0C, 

which r e su l t ed  i n  less s e n s i t i v i t y  and a threshold  of 1.80 eV. BaO was 
evaporated f o r  one more minute a t  a source temperature of 1 0 0 0 ° C ,  which 
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resu l ted  i n  even lower s e n s i t i v i t y  and a h igher  threshold energy. 

it was obvious that  the  optimum thickness  of BaO had been exceeded and 

t h i s  experiment was terminated. 

Thus, 
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The second experiment was set up i n  exactly t h e  same manner a s  

t h e  f i r s t  but  t h e  second c r y s t a l  d i d  not c leave  a s  w e l l  a s  i n  t h e  f i r s t  

experiment. The BaO evaporat ion temperature was f u r t h e r  reduced t o  

95OoC and t h e  s e n s i t i v i t y  was checked a t  1/2-minute i n t e r v a l s  t o  deter- 

mine t h e  optimum th ickness  of BaO. Good con t ro l  was obtained using t h i s  

procedure, and t h e  th ickness  of t he  BaO was optimized. The bes t  s ens i -  

t i v i t y  and lowest-threshold energy coincided,  a s  would be expected. Be- 

yond t h e  optimum amount of BaO t h e  s e n s i t i v i t y  decreased about a s  r ap id ly  
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a s  it had increased, whi le  t h e  threshold energy increased a t  a much 

slower r a t e .  The cathode was found t o  be unstable,  decreasing i n  sensi- 

t i v i t y  to  about 60% of its  o r i g i n a l  va lue  i n  about 4 hours.  The cathode 
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could be brought back t o  its o r ig ina l  s e n s i t i v i t y  and work func t ion  with 

t h e  evaporat ion of more BaO. I f  less than an optimum amount of BaO was 

app l i ed ,  t h e  cathode s e n s i t i v i t y  simply decreased with t i m e .  I f  too much 

BaO was put on, t h e  s e n s i t i v i t y  would increase  through a peak and then  

decrease,  a s  shown i n  F ig .  21. 
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Photoemission from the cathode decreased t o  n e g l i g i b l e  va lues  

A f t e r  t h i s  decrease,  the  cathode could be r e a c t i -  i n  a 12-hour per iod.  

vated t o  i t s  i n i t i a l  s e n s i t i v i t y  and work func t ion  by t h e  app l i ca t ion  of 

more BaO. The same schedule of evaporation and t e s t i n g  was followed on 

t h e  second day, using a source temperature of 95OoC and 1/2-minute 
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evapora t ions  of BaO. The cathode a c t i v a t e d  more r ap id ly  than on t h e  

f i r s t  day but followed t h e  same p a t t e r n  of decay. I t  is  uncer ta in  a t  

t h i s  po in t  whether t h e  decay w a s  caused by the BaO leaving  the su r face  

o r  a l a y e r  of contamination was bui lding up on t h e  su r face .  

I n  t h e  next experiment t h e  GaAs c r y s t a l  was heated t o  a tempera- 

t u r e  of 400'C during t h e  app l i ca t ion  of BaO. Thresholds a s  low a s  1.25 

e V  w e r e  obtained i n  s p e c t r a l  response measurements, b u t  the  s e n s i t i v i t y  

was very l o w .  I n  consu l t ing  w i t h  P r o f .  W. Spice r  from Stanford 

Univers i ty ,  it was suggested t h a t  most of the response was coming from 

the  BaO, not  from the GaAs. T h e  mobil i ty  of the GaAs was not  pa r t i cu -  

l a r l y  high and due t o  the  l o w  absorpt ion c h a r a c t e r i s t i c s  of t h e  ma te r i a l ,  

t h e  c a r r i e r s  w i t h  enough energy t o  escape i n t o  vacuum were generated 

so deep i n  the  GaAs t h a t  they  lost t he i r  energy before  reaching t h e  s u r -  

f a c e .  

and heavier  doped GaAs. 

I t  i s  planned t o  ca r ry  o u t  f u r t h e r  experiments w i t h  h igher  mobi l i ty  

2. The Transverse F ie ld  Cathode 

One of t h e  e a r l i e s t  incidences of hot  e l e c t r o n  emission re- 

ported i s  the emission from back-biased S i  P-N junct ions. '  

occurred along t h e  l i n e  of t h e  exposed junc t ion  where it i n t e r s e c t e d  

the  sur face .  T h i s  t y p e  of emi t t e r  s u f f e r s  from two s e r i o u s  drawbacks. 

For one th ing ,  most of t h e  c u r r e n t  through t h e  junc t ions  is  completely 

wasted because of t h e  very poor geometry of the  device.  Attempts have 

been made t o  obta in  broad-area emission from a f a c e  of the  n-type 

reg ion  p a r a l l e l  and very close t o  the junc t ion ,  bu t  these a t tempts  have 

apparent ly  not  been t o o  successful .  For another  th ing ,  S i  i s  a poor 

ma te r i a l  t o  u s e  for  such a t r ansve r se - f i e ld  emitter because OS i t s  small  

bandgap. The threshold  f o r  p a i r  product ion i s  only about 2 v o l t s  above 

The emission 

t h e  bottom of t h e  conduction band, making it exceedingly d i f f i c u l t  t o  

ob ta in  hot e l e c t r o n s  above t h e  vacuum energy l e v e l .  Most workers have 

attempted t o  overcome t h i s  l i m i t a t i o n  by c e s i a t i n g  t h e  su r face  i n  order  

t o  br ing  the  vacuum energy l e v e l  down below the  threshold  for  p a i r  

product ion.  
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The drawbacks of t h e  P-N junct ion S i  ho t -e lec t ron  emitter can 

be overcome through proper  design and by using appropr ia te  ma te r i a l s .  

F i r s t  of a l l ,  t h e  very l a r g e  cu r ren t  l o s s e s  through t h e  P-N j unc t ion  can 

be reduced orders  of magnitude by using evaporated metal  e l ec t rodes  on 

a f a c e  of a s u i t a b l e  semiconductor or i n s u l a t o r  c r y s t a l  a s  shown i n  F ig .  

22. I n  t h i s  arrangement, most of t h e  cu r ren t  f lows very c l o s e  t o  t h e  

C R Y S T A L  OF 
b M g O  O R  O T H E R  

S E M I C O N D U C T O R  

FIG. 22 SCHEMATIC DRAWING OF M-l TRANSVERSE FIELD EMITTER 

f a c e  of t h e  c r y s t a l  where it is exposed t o  t h e  vacuum i n  t h e  gap between 

t h e  t w o  m e t a l l i c  e l ec t rodes .  The gap between t h e  t w o  metal  f i l m s  should 

be narrow enough so t h a t  high e l e c t r i c  f i e l d s  can be created by low 
3 4 

appl ied  dc poten t ia l s - - for  example, 10 v o l t s .  F i e l d s  of 10 t o  10 

volts/cm should be s u f f i c i e n t  t o  generate  apprec iab le  q u a n t i t i e s  of hot  

e l e c t r o n s ,  and a narrow gap ensures  t h a t  t h e  major i ty  of t h e  cur ren t  

flow occurs  very near  t o  t h e  exposed su r face  of t h e  c r y s t a l .  

An a l t e r n a t i v e  arrangement is shown i n  Fig.  23. I n  t h i s  case  

t h e  metal  e l ec t rodes  a r e  evaporated onto a very good d ie lec t r ic  having 

a h igh  breakdown s t rength ,  such a s  quartz .  

s u i t a b l e  semiconductor o r  semi-insulator is  deposi ted over t h e  metals ,  

a s  shown. Th i s  arrangement has  the advantage over t h e  s ing le -c rys t a l  

scheme shown i n  F ig .  22, t h a t  a l l  of t h e  cu r ren t  can be made t o  flow 

v e r y  c l o s e  t o  t h e  sur face  of t h e  top  l a y e r ,  y i e ld ing  improved e f f i c i e n c y .  

Then a t h i n  l a y e r  of a 

An i d e a l  semiconductor f o r  t h e  t r ansve r se - f i e ld  semiconductor 

emitter would have t h e  following p rope r t i e s :  

(1) A l a r g e  bandgap, so tha t  t h e  threshold  energy f o r  

p a i r  production would be high 
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(2) A l o w  e l e c t r o n  a f f i n i t y ,  so t h a t  a l a r g e  percentage 

of t h e  hot e l e c t r o n s  could escape i n t o  t h e  vacuum 

a t  r e l a t i v e l y  low values  of e l e c t r i c  f i e l d  without 

r equ i r ing  a low-work-function t reatment  

(3) A low vapor p re s su re  and a high melt ing po in t  

(4) Good chemical s t a b i l i t y  and i n e r t n e s s .  

The theory of the  t ransverse- f ie ld  semiconductor emitter is  

s t ra ight - forward .  Elec t rons  a r e  simply acce le ra t ed  t o  high energy l e v e l s  

by a s t rong  f i e l d  e x i s t i n g  across  a narrow region of t h e  m a t e r i a l ,  and 

because of electron-phonon i n t e r a c t i o n s  the momentum of the e l e c t r o n s  

is  randomized. Thus, many of t h e  hot e l e c t r o n s  ob ta in  momentum per- 

pendicular  t o  the sur face ,  and s u f f i c i e n t  energy i s  assoc ia ted  w i t h  

the momentum for  t h e  e l e c t r o n  t o  overcome t h e  work func t ion  a t  t h e  s u r -  

f a c e  and escape i n t o  t h e  vacuum. Then, provided an acce le ra t ing  f i e l d  

i s  presented t o  the  e l e c t r o n s  by a p o s i t i v e l y  biased electrode near  the  

su r face ,  t h e  e l e c t r o n s  can be acce lera ted  i n t o  t he  vacuum and used a s  

d e s i r e d .  

During emission t e s t s  on T i 0  cathode s t r u c t u r e s  i n  a previous 2 
s t u d y  f o r  Microwave E lec t ron ic s  Corporation, a t r ansve r se - f i e ld  mode of 

opera t ion  was obtained.  

bdenum su r face  f i l m s  and subsequent exposure t o  BaO. A d e l i b e r a t e  

experiment t o  demonstrate t h e  c a p a b i l i t i e s  of t h i s  type of emitter was 

performed i n  t h e  l a s t  q u a r t e r  of the  cu r ren t  program. The technique 

and the r e s u l t s  obtained a r e  described i n  Sec. 11-E-2 of t h i s  r e p o r t .  

T h i s  was due  t o  f i s s u r e s  developing i n  moly- 
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E .  Emission T e s t s  

1. GaP/Pd/BaO Cathodes 

Experiments w i t h  GaP/Pd cathode s t r u c t u r e s  a c t i v a t e d  w i t h  BaO 
5 were descr ibed i n  t h e  Third Quarter ly  Report. Reasonable diode charac- 

terist ics were obtained p r i o r  t o  assembly and processing f o r  emission. 

The GaP/Pd b a r r i e r  heights w e r e  of t he  same o rde r  measured previous ly  

(Sec. II-B-3),  b u t  t h e r e  was only a small  margin between t h i s  va lue  and 

a t t a i n a b l e  Pd/BaO vacuum b a r r i e r s .  When the GaP/Pd b a r r i e r  d e t e r i o r a t e d  

dur ing  a bake-out cycle, t h i s  margin was l o s t .  

I t  i s  poss ib l e  t h a t  sur face  s t a t e s  due t o  d e f e c t s  a t  t he  GaP/Pd 

i n t e r f a c e  pushed the  b a r r i e r  up, and when some of these d e f e c t s  were 

annealed out ,  t h e  b a r r i e r  came down. Another f a c t o r  being considered 

i s  a d i s t r i b u t i o n  of b a r r i e r  heights  (Appendix.A, T h i r d  Q u a r t e r l y  

Report).’ When b i a s  is  appl ied ,  t h e  cu r ren t  i n  the  l o w  b a r r i e r  regions 

dominates, and very few e l e c t r o n s  acqui re  enough energy t o  escape i n t o  

t h e  vacuum. 

2. Si/BaO/Al Transverse Field Cathode 

A r e l a t i v e l y  s i m p l e  s t r u c t u r e  was used t o  demonstrate t h e  con- 

cept  of t h e  t r ansve r se  f i e l d  cathode. A wafer of l o w - r e s i s t i v i t y  s i l i c o n  

was oxidized thermally t o  produce about one micron of S i0  on i t s  su r face .  

A f i l m  of A 1  was then evaporated on top  of the  oxide on one s i d e  and the  

wafer was cleaved i n t o  smal le r  s ec t ions  having w e l l  def ined edges. 

A f t e r  e tch ing  off t h e  oxide on t h e  r eve r se  s i d e ,  one of these s e c t i o n s  

was bonded t o  a s tandard TO-9 gold-plated header.  T h i s  was mounted i n  

a g l a s s  envelope with a tungs ten  w i r e  probe making con tac t  t o  the A 1  

f i l m .  A BaO source was mounted so t h a t  BaO would evaporate  onto t h e  

exposed edge of the s t r u c t u r e  (Fig. 24) .  A s l i d i n g  s h u t t e r  between 

t h e  BaO source and t h e  s t r u c t u r e  was included t o  prevent  contamination 

during the  conversion of t h e  BaCo t o  t h e  oxide.  T h i s  s h u t t e r  l a t e r  3 
served a s  an e f f e c t i v e  c o l l e c t o r  during the emission measurements. 

2 

Processing included an overnight bake-out a t  3OO0C, followed 

by conversion of t h e  carbonate and another  overnight  bake-out. Barium 
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FIG. 24 EXPERIMENTAL TRANSVERSE-FIELD COLD-CATHODE STRUCTURE 

g e t t e r s  w e r e  f i r e d  and t h e  tube  w a s  t ipped  o f f .  A lOOV b i a s  supply was 

connected across t h e  SiO, l a y e r  and BaO evaporated u n t i l  a b i a s  cu r ren t  
L 

of a f e w  microamperes w a s  obtained 

s i l i c o n .  

A considerable  amount of 

tube.  Figures  25(a), (b), and (c) 

between t h e  aluminum f i l m  and t h e  

emission da ta  was obtained from t h i s  

show p l o t s  of b i a s  cu r ren t  and co l -  

l e c t o r  cu r ren t  vs .  b i a s  vo l tage  f o r  c o l l e c t o r  p o t e n t i a l s  of 300, 600, 

and 900 v o l t s ,  respec t ive ly .  More BaO was evaporated a f t e r  t h e  measure- 

ments were taken with 300V on t h e  co l l ec to r ,  and from t h e  r a t i o s  of 

I /I it appears t h a t  t h e  cathode was less e f f i c i e n t  with t h e  add i t iona l  

BaO. 

and va lues  as h igh  as 0.46 were recorded. 

c b  
I n i t i a l l y  t h i s  r a t i o  was g r e a t e r  than  0.10 a t  h igher  b i a s  vo l tages ,  

Using a collector cur ren t  of 10 p.4 from F ig .  25(c),  an emission 

cu r ren t  dens i ty  of 1/3 ampere p e r  square c m  i s  obtained f o r  t h e  edge 

nea res t  t o  t h e  BaO source.  The cont r ibu t ion  t o  t h e  cu r ren t  from t h e  

o t h e r  edges i s  not  known, but f r o m t h e  geometry used it should be q u i t e  

small .  The cathode was operated fo r  s e v e r a l  hours a t  one microampere 

of c o l l e c t o r  cu r ren t .  There was some i n s t a b i l i t y ,  but undoubtedly t h i s  
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FIG.25(a) PLOT OF BIAS CURRENT AND COLLECTOR CURRENT vs. BIAS VOLTAGE 
FOR TRANSVERSE-FIELD EMITTER (Collector Voltage = 300V) 

could be improved by increasing the emitting area and operating at lower 

current densities. 

Figure 26 is a plot of collector current vs. collector voltage 

at a constant bias current of 30 pA. At collector voltages below 350V 
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FIG. 25(b) PLOT OF BIAS CURRENT AND COLLECTOR CURRENT vs. 
BIAS VOLTAGE FOR TRANSVERSE-FI ELD EMITTER 
(Collector Voltage = 600V) 

I 

- 

the  cu r ren t  may be space-charge l i m i t e d .  A t  h igher  c o l l e c t o r  vo l t ages  

there is some ind ica t ion  of s a t u r a t i o n  or t r a n s v e r s e  f i e l d - l i m i t e d  

emission. This  is  cons i s t en t  with the c h a r a c t e r i s t i c s  pred ic ted  f o r  

t h i s  type  of emitter. 

F. L i f e  T e s t s  

1. GaP/Pt Diode  

One diode of t h i s  type was operated f o r  4300 hours  a t  1.5V 

appl ied b i a s  with no apparent change i n  i ts  c h a r a c t e r i s t i c s  dur ing  t h i s  
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FIG.25(c) PLOT OF BIAS CURRENT AND COLLECTOR CURRENT vs. BIAS VOLTAGE 
FOR TRANSVERSE-FI ELD EMITTER (Collector Voltage = 900V) 

per iod .  The test was terminated when the  probe contac t  t o  the P t  f i l m  

became i n t e r m i t t e n t .  A second diode on the  same GaP c r y s t a l  was then  

placed on test .  A f t e r  1500 hours of opera t ion  a t  1 . O V  appl ied b i a s ,  

t h e  I-V c h a r a c t e r i s t i c  became "soft. The test on t h e  o r i g i n a l  diode 

was then resumed and it  has been operat ing for  an a d d i t i o n a l  2000 h o u r s  

a t  1 . 5 V  b i a s .  

I 1  
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FIG.26 PLOT OF COLLECTOR CURRENT vs. COLLECTOR VOLTAGE 
FOR TRANSVERSE-FIELD EMITTER (Bias Voltoge = 89V, 
Bias Current = 30 PA) 

2. GaPDd Diode 

The GaPDd diode has an accumulated life of almost 2000 hours 

at l . W  forward bias. 

on a curve tracer. The test was interrupted for two weeks while other 

measurements were made on the diode. 

Figure 27 is a photograph of the I-V characteristic 
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FIG. 27 PHOTOGRAPH OF I-V CHARACTERISTICS OF GaP/Pd DIODE 
ON LIFE TEST 

3.  Ag/BaO Phototube 

The most recent  measurement on an Ag/BaO phototube with a 

t o t a l  s h e l f  l i f e  of 14,000 hours i s  1 .55  e V .  The r e s u l t s  of s ix  previous 

measurements over a period of 16 months have been reported? The average 

of a l l  measurements to  date i s  1 . 4 9  e V .  
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A .  Surface-Barr ier  Cathode 
~~ 

A su r face -ba r r i e r  cathode 

CONCLUSIONS 

using GaP f o r  t h e  semiconductor and BaO 

f o r  t h e  a c t i v a t o r  does not  appear t o  be a workable combination. Several  

explana t ions  and combinations of condi t ions  c o u l d  be respons ib le .  F i r s t  

of a l l ,  the  GaP/metal diodes f ab r i ca t ed  and tested t o  d a t e  d o  not  follow 

Schottky theory .  Thus the exact  mechanism of cu r ren t  flow is  not known. 

Under forward b i a s ,  t h e  GaP may not be i n j e c t i n g  hot  e l e c t r o n s  i n t o  the 

meta l .  An i n t e r f a c i a l  contaminating l a y e r  between t h e  GaP and the  metal 

could be causing severe  e l e c t r o n  l o s s e s  before  t h e  e l e c t r o n s  reach t h e  

meta l .  Second, there a r e  seve ra l  i nd ica t ions  t h a t  t h e  GaP/metal diodes 

f a b r i c a t e d  and tested t o  d a t e  do not have uniform b a r r i e r s .  P l o t s  of 
z 

1 / C  vs. V, s p e c t r a l  response,  and J v s ,  V a l l  i n d i c a t e  t h a t  the  b a r r i e r s  

a r e  nonuniform, with b a r r i e r  regions below one e V .  Thus,  most of the  

cu r ren t  f low could be Over the  l o w  b a r r i e r  r eg ions ,  T h i r d ,  even a m i l d  

bake-out (- 200°C) appears t o  cause a reduct ion  i n  b a r r i e r  he ight  and a 

decrease i n  b a r r i e r  uniformity.  A f t e r  bake-out, t y p i c a l  b a r r i e r  he igh t s  

a r e  about 1.25 e V  maximum. Thus,  even i f  there w e r e  no e l e c t r o n  

s c a t t e r i n g  i n  an i n t e r f a c i a l  contaminating l a y e r ,  t h e  v a s t  major i ty  of 

t h e  hot e l e c t r o n s  in j ec t ed  i n t o  the  metal  have ene rg ie s  of only about 

0.8 t o  about 1.25 e V .  

F i n a l l y ,  there i s  the quest ion of t h e  t ransmiss ion  of e l e c t r o n s  

through t h e  BaO a c t i v a t i o n  i n t o  the  vacuum. The exac t  th ickness  of t h e  

BaO f i l m s  f o r  optimum pho toe lec t r i c  emission i s  not  known, b u t  i s  be- 

l i eved  t o  be about 25 monolayers. From metal/semiconductor con tac t  

theory, one can expect an energy diagram as shown i n  Fig.  28. The BaO 

forms a very h igh  Schottky b a r r i e r  i n  combination w i t h  the metal ,  owing 

t o  the very l o w  e l e c t r o n  a f f i n i t y  of BaO. The Schottky b a r r i e r  is  q u i t e  

t h i n ,  however, because of t h e  high donor dens i ty  (deep donors) gene ra l ly  

present  i n  BaO. 

vacuum, t h e  e l e c t r o n s  must f i rs t  pene t r a t e  t h e  Schottky b a r r i e r  i n t o  t h e  

conduction band of t h e  BaO. Then they  must t r a v e r s e  t h e  BaO l a y e r  t o  

Thus, f o r  hot e l ec t rons  from the metal  t o  e n t e r  the 
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FIG.28 PROPOSED ENERGY DIAGRAM FOR A THIN 
FILM OF Bo0 ON METAL 

t h e  vacuum without s c a t t e r i n g ,  energy loss, o r  momentum changes. The 

o v e r a l l  p robab i l i t y  of a hot e lec t ron  i n  t h e  metal en te r ing  t h e  vacuum 

can be expressed i n  terms of a transmission c o e f f i c i e n t  T.  I t  can be 

expected t h a t  T would be a s t rong  func t ion  of t h e  energy of t h e  hot  

e l e c t r o n s .  For energ ies  below the  vacuum l e v e l ,  T would be zero o r  

very  near ly  ze ro  f o r  some reasonable ex te rna l  vacuum f i e l d .  A t  and 

immediately above t h e  vacuum leve l ,  T would be small  f o r  t w o  reasons.  

F i r s t ,  t h e  tunnel ing p r o b a b i l i t y  through t h e  Schottky b a r r i e r  would be 

r e l a t i v e l y  low. Second, any sca t t e r ing ,  such as by acous t i ca l  or 

o p t i c a l  phonons, would reduce t h e  energy of t h e  e l e c t r o n s  below t h e  

vacuum l e v e l  and/or r e d i r e c t  t h e  momentum of t h e  e l e c t r o n s  away from t h e  

acceptable  emission angles .  

As t h e  energy of t h e  hot  e l ec t rons  i n  t h e  metal  i s  increased,  T 

would be expected t o  increase  f o r  t w o  reasons.  F i r s t ,  t h e  t ransmission 

p r o b a b i l i t y  through t h e  Schottky b a r r i e r  would increase .  Second, some 

energy loss could be sustained and t h e  e l e c t r o n s  s t i l l  l e f t  with enough 
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energy t o  e n t e r  t h e  vacuum. A t  s u f f i c i e n t l y  high ene rg ie s ,  t he  e l e c t r o n s  

could e s s e n t i a l l y  d i f f u s e  through t h e  BaO and i n t o  t h e  vacuum. 

On examining t h e  photoemission da ta  f o r  BaO on metals ,  it i s  poss ib l e  

t o  i n t e r p r e t  t h e  da t a  a s  follows. For high va lues  of hv, t h e  photoelectrons 

o r i g i n a t e  from the  metal  because fo r  t h e  higher-energy e l e c t r o n s ,  T is  

high.  A s  t h e  photothreshold i s  approached, however, t h e  number of photo- 

e l e c t r o n s  o r i g i n a t i n g  from t h e  m e t a l  decreases  d r a s t i c a l l y  owing t o  t h e  

rap id  decrease i n  T, and t h e  ac tua l  photoemission observed begins  t o  be 

dominated by e l e c t r o n s  o r ig ina t ing  from t h e  BaO i t s e l f .  

An a l t e r n a t i v e  t o  BaO t h a t  should avoid t h e  foregoing complications 

i s  a monolayer of ces ium on the metal. This  would r e s u l t  i n  a r e l a t i v e l y  

uns t ab le  s t r u c t u r e ,  however, and i s  no t  recommended. A more d e s i r a b l e  

approach would be t o  f i n d  a semiconductor t h a t  produces a much h igher  

Schottky b a r r i e r  than those  produced by GaP (- 1 . 4  e V ) .  I f  Schottky 

b a r r i e r s  of 2.0 t o  2.5 eV could be produced, a workable cathode us ing  

BaO a c t i v a t i o n  might be f e a s i b l e .  I t  should be pointed out ,  however, 

t h a t  t h e  mean f r e e  path of t h e  hot  e l e c t r o n s  i n  t h e  metal  f i l m  would 

be lower a t  t h e  h igher  energ ies ,  thus causing some reduct ion i n  

e f f i c i e n c y .  

B. T rans i s to r  Cathode 

Only a prel iminary amount of e f f o r t  has  been expended i n  t h e  a rea  

of t h e  t r a n s i s t o r  cathode, so t h a t  few conclusions can be s t a t e d  a t  

t h i s  t i m e .  I t  does appear, however, t h a t  t h e  d i f f i c u l t i e s  discussed 

above f o r  BaO on metals appl ies ,  and perhaps even more s t rongly ,  t o  

semiconductors. Owing t o  t h e  l o w  absorpt ion c o e f f i c i e n t  f o r  l i g h t  i n  

G a A s  ( u n t i l  h igh va lues  of hv are reached) most of t h e  e l e c t r o n s  exc i t ed  

i n t o  t h e  conduction band of t h e  GaAs are generated a t  a cons iderable  depth 

from t h e  su r face .  

i s  e s s e n t i a l l y  t h a t  corresponding t o  t h e  bottom of t h e  conduction band. 

A t  t h e s e  low energ ies ,  t h e  transmission c o e f f i c i e n t  T of t h e  e l e c t r o n s  

through t h e  BaO and i n t o  t h e  vacuum i s  probably q u i t e  low, thus  y i e ld ing  

a l o w  quantum ef f ic iency .  One might expect ,  then, t h a t  t h e  photoelectrons 

observed would o r i g i n a t e  predominantly from t h e  BaO i t s e l f .  

mental da t a  do, indeed, appear t o  confirm t h i s  conclusion.  

By t h e  time they d i f f u s e  t o  t h e  sur face ,  t h e i r  energy 

The experi-  
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c .  Transverse F ie ld  E m i t t e r  

The TFE c o n s t i t u t e s  a s t ra ightforward and direct  approach t o  hot-  

e l e c t r o n  emission. A simple explanat ion f o r  t h e  observed behavior is 

t h a t  a t  high f i e l d s ,  e l e c t r o n s  tunnel from t h e  negat ive e l e c t r o d e  i n t o  

t h e  conduction band of t h e  BaO, wherein some of them a r e  acce le ra t ed  t o  

h i g h  energy l e v e l s .  A t  s u f f i c i e n t l y  high f i e l d s ,  avalanche breakdown 

occurs,  producing copious q u a n t i t i e s  of hot  e l e c t r o n s  and hot  holes. 

Owing t o  the  favorable  device geometry employed, t h e  escape p r o b a b i l i t y  

f o r  a hot e l ec t ron  i n t o  vacuum is q u i t e  h igh,  t h u s  lead ing  t o  t h e  high 

va lues  of alpha observed. Much more work on t h e  TFE i s  required,  how- 

e v e r ,  t o  determine the  exact physical  mechanisms involved and t h e  over- 

a l l  usefulness  of the  cathode i n  var ious p r a c t i c a l  app l i ca t ions .  

D. General Conclusions 

The d ipo le  theory of BaO b a r r i e r  lowering appears t o  be i n v a l i d .  

The t h e o r y  presented above i n  terms of a semiconductor energy diagram 

i s  much more i n  accord w i t h  t h e  experimental  da t a  obtained dur ing  the  

course of t h i s  program. A p a r t i c u l a r l y  p e r t i n e n t  example is  t h e  f a c t  

t h a t  t he  work func t ion  a f t e r  BaO deposi t ion i s  almost completely in-  

dependent of t he  work func t ion  of the  s u b s t r a t e  before  a c t i v a t i o n .  

Another example is  t h e  requirement f o r  a BaO l a y e r  of seve ra l  monolayers 

th ickness  i n  order  t o  achieve a low work func t ion .  

The  sur face-bar r ie r  and t r a n s i s t o r  cold cathodes would be more 

f e a s i b l e  i f  a work func t ion  lower than what has  been obtained so f a r  from 

a s t r a i g h t  BaO evaporat ion could be achieved. A p a r t i c u l a r l y  a t t r a c t i v e  

p o s s i b i l i t y  is t o  dope the BaO heavi ly  w k t h  shallow donors. Th i s  would 

make the BaO Schottky b a r r i e r  th inner ,  t hus  improving the  tunnel ing  

p r o b a b i l i t y  of hot  e l e c t r o n s  from a metal  o r  semiconductor s u b s t r a t e  

i n t o  the BaO conduction band. 

would enable  a t h inne r  BaO f i lm  t o  be used f o r  a low-work-funcDion 

condi t ion,  t h u s  increas ing  the p robab i l i t y  of t ransmiss ion  from the  BaO 

conduction band i n t o  the  vacuum. F ina l ly ,  t h e  work func t ion  i t s e l f  

could be reduced by seve ra l  t e n t h s  of an eV.  

i n d i c a t e  t h a t  a work func t ion  on the  o rde r  of 0 . 8  e V  should be achievable  

I n  addi t ion ,  t he  th inne r  Schottky b a r r i e r  

Calcu la t ions  by Gormanl' 
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by doping heavi ly  w i t h  a r a r e  e a r t h  metal .  Gorman t r i ed  without success 

t o  demonstrate such a reduct ion i n  work func t ion .  Gorman's experimental  

approach was h ighly  ques t ionable ,  however. I t  is  bel ieved t h a t  a s t r a i g h t -  

forward co-evaporation s h o u l d  accomplish t h e  des i r ed  doping. If success fu l ,  

such an accomplishment would not  only make the cold cathode schemes more 

a t t r a c t i v e ,  but an  in f r a red  photocathode and a low-temperature thermionic  

emitter m i g h t  be poss ib l e  outgrowths of such work. 
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IV RECOMMENDATIONS FOR FURTHER WORK 

A .  Schottky B a r r i e r  Cathode 

(1) Continue development of techniques f o r  f a b r i c a t i n g  metal /  

semiconductor diodes t h a t  f i t  Schottky theory.  

(2) Continue s tudy of BaO a c t i v a t i o n  of metals. 

B. T r a n s i s t o r  Cathode 

(1) Study semiconductor mater ia l s  t h a t  look promising f o r  

app l i ca t ion  t o  t h e  p-n junc t ion  cathode. 

(2) Continue study of BaO a c t i v a t i o n  of semiconductors. 

(3) Develop techniques f o r  f a b r i c a t i o n  of ,complete  cathode 

s t r u c t u r e s .  

C. Transverse-Field Emitter 

(1) Conduct experimental  and theoretical s t u d i e s  of 

wide-band-gap, low-electron-aff ini ty  semiconductors 

s u i t a b l e  f o r  t h e  TFE. 

(2) Continue with t h e  development of techniques f o r  

f a b r i c a t i o n  of TFEs. 

45 



REFERENCES 

11 1. D. V .  Geppert and B. V .  Dore, 
Second Q u a r t e r l y  Report, SRI P ro jec t  5511, Contract  NAS 5-9581, 
Stanford Research I n s t i t u t e ,  Menlo Park,  C a l i f o r n i a  (November 
1965). 

Research on Cold Cathodes," 

11 2. D. V .  Geppert and B. V .  Dore, 
F i r s t  Q u a r t e r l y  Report, SRI Pro jec t  5511, Contract  NAS 5-9581, 
Stanford Research I n s t i t u t e ,  Menlo Park,  C a l i f o r n i a  (August 
1965) . 

Research on Cold Cathodes," 

I 1  3. D. V .  Geppert, A. M .  Cowley, and B. V .  Dore, Cor re l a t ion  of 
Metal/Semiconductor B a r r i e r  Height and Metal Work Function: 
E f f e c t s  of Surface S t a t e s , "  t o  be published i n  J .  Appl. Phys. 

11 4 .  D. V .  Geppert and B. V.  Dore, Cold Cathodes f o r  Low-Noise 
TWT Applications," 
010165, Stanford Research I n s t i t u t e ,  Menlo Park,  C a l i f o r n i a  
(September 1965). 

F ina l  Report, SRI P r o j e c t  5175, Contract  SRI 

11 11 5. D. V. Geppert and B. V. Dore, Research on C o l d  Cathodes, 
Third Q u a r t e r l y  Report, SRI P ro jec t  5511, Contract  NAS 5-9581, 
Stanford Research I n s t i t u t e ,  Menlo Park, C a l i f o r n i a  (February 
1966). 

6. G. E. Moore and H. W .  Al l i son ,  Phys. Rev. 77,  p. 246 (1950). 

7 .  J.  J .  Scheer and J .  van Laar, Sol id  S t a t e  Comm. 3, p. 189 
(1965). 

8. J .  Burton, Phys. Rev. 108, p. 1342 (1957). 

9. Eim, P e l l ,  Phys. Rev. 87, p .  457 (1952). 

10. J .  K.  Gorman, J .  Appl. Phys. 33, p. 3170 (November 1962) 

46 


